On a Theorem of Schur

نویسندگان

  • PETER HILTON
  • Paul Olum
چکیده

We study the ramifications of Schur’s theorem that, if G is a group such that G/ZG is finite, then G′ is finite, if we restrict attention to nilpotent group. Here ZG is the center of G, and G′ is the commutator subgroup. We use localization methods and obtain relativized versions of the main theorems. 2000 Mathematics Subject Classification. 20B07, 20D15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Schur Multipliers of Pairs and Triples of Groups with Topological Approach

In this paper, using a relation between Schur multipliers of pairs and triples of groups, the fundamental group and homology groups of a homotopy pushout of Eilenberg-MacLane spaces, we present among other things some behaviors of Schur multipliers of pairs and triples with respect to free, amalgamated free, and direct products and also direct limits of groups with topological approach.

متن کامل

A New Look at the Burnside–schur Theorem

The famous Burnside–Schur theorem states that every primitive finite permutation group containing a regular cyclic subgroup is either 2-transitive or isomorphic to a subgroup of a 1-dimensional affine group of prime degree. It is known that this theorem can be expressed as a statement on Schur rings over a finite cyclic group. Generalizing the latter, Schur rings are introduced over a finite co...

متن کامل

An Improved Julia-caratheodory Theorem for Schur-agler Mappings of the Unit Ball

We adapt Sarason’s proof of the Julia-Caratheodory theorem to the class of Schur-Agler mappings of the unit ball, obtaining a strengthened form of this theorem. In particular those quantities which appear in the classical theorem and depend only on the component of the mapping in the complex normal direction have K-limits (not just restricted K-limits) at the boundary. Let B denote the open uni...

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

Abel-schur Multipliers on Banach Spaces of Infinite Matrices

We consider a more general class than the class of Schur multipliers namely the Abel-Schur multipliers, which in turn coincide with the bounded linear operators on `2 preserving the diagonals. We extend to the matrix framework Theorem 2.4 (a) of a paper of Anderson, Clunie, and Pommerenke published in 1974, and as an application of this theorem we obtain a new proof of the necessity of an old t...

متن کامل

Characterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)

‎Let $G$ be a finite $p$-group of order $p^n$ and‎ ‎$|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$‎, ‎where ${mathcal M}(G)$‎ ‎is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer‎. ‎The classification of such groups $G$ is already known for $t(G)leq‎ ‎6$‎. ‎This paper extends the classification to $t(G)=7$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001